@echospot said:
I tried that but its like its still used the same part of that grid it generated. Idk I'm so confused xD
I can’t remember if @destroflyer noise generator was just cut down version of generating some noise frequency, but for some reason I went with simplex noise.
Main Class
[java]package mygame.Math;
import java.util.Random;
/*
 A speedimproved simplex noise algorithm for 2D, 3D and 4D in Java.

 Based on example code by Stefan Gustavson (stegu@itn.liu.se).
 Optimisations by Peter Eastman (peastman@drizzle.stanford.edu).
 Better rank ordering method by Stefan Gustavson in 2012.

 This could be speeded up even further, but it’s useful as it is.

 Version 20120309

 This code was placed in the public domain by its original author,
 Stefan Gustavson. You may use it as you see fit, but
 attribution is appreciated.

*/
public class SimplexNoise { // Simplex noise in 2D, 3D and 4D
public static int RANDOMSEED = 0;
private static int NUMBEROFSWAPS = 400;
private static Grad grad3[] = {new Grad(1, 1, 0), new Grad(1, 1, 0), new Grad(1, 1, 0), new Grad(1, 1, 0),
new Grad(1, 0, 1), new Grad(1, 0, 1), new Grad(1, 0, 1), new Grad(1, 0, 1),
new Grad(0, 1, 1), new Grad(0, 1, 1), new Grad(0, 1, 1), new Grad(0, 1, 1)};
private static Grad grad4[] = {new Grad(0, 1, 1, 1), new Grad(0, 1, 1, 1), new Grad(0, 1, 1, 1), new Grad(0, 1, 1, 1),
new Grad(0, 1, 1, 1), new Grad(0, 1, 1, 1), new Grad(0, 1, 1, 1), new Grad(0, 1, 1, 1),
new Grad(1, 0, 1, 1), new Grad(1, 0, 1, 1), new Grad(1, 0, 1, 1), new Grad(1, 0, 1, 1),
new Grad(1, 0, 1, 1), new Grad(1, 0, 1, 1), new Grad(1, 0, 1, 1), new Grad(1, 0, 1, 1),
new Grad(1, 1, 0, 1), new Grad(1, 1, 0, 1), new Grad(1, 1, 0, 1), new Grad(1, 1, 0, 1),
new Grad(1, 1, 0, 1), new Grad(1, 1, 0, 1), new Grad(1, 1, 0, 1), new Grad(1, 1, 0, 1),
new Grad(1, 1, 1, 0), new Grad(1, 1, 1, 0), new Grad(1, 1, 1, 0), new Grad(1, 1, 1, 0),
new Grad(1, 1, 1, 0), new Grad(1, 1, 1, 0), new Grad(1, 1, 1, 0), new Grad(1, 1, 1, 0)};
private static short p_supply[] = {151, 160, 137, 91, 90, 15, //this contains all the numbers between 0 and 255, these are put in a random order depending upon the seed
131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23,
190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33,
88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166,
77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244,
102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196,
135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123,
5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42,
223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228,
251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107,
49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254,
138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180};
private short p[] = new short[p_supply.length];
// To remove the need for index wrapping, double the permutation table length
private short perm[] = new short[512];
private short permMod12[] = new short[512];
public SimplexNoise(int seed) {
p = p_supply.clone();
if (seed == RANDOMSEED) {
Random rand = new Random();
seed = rand.nextInt();
}
//the random for the swaps
Random rand = new Random(seed);
//the seed determines the swaps that occur between the default order and the order we're actually going to use
for (int i = 0; i < NUMBEROFSWAPS; i++) {
int swapFrom = rand.nextInt(p.length);
int swapTo = rand.nextInt(p.length);
short temp = p[swapFrom];
p[swapFrom] = p[swapTo];
p[swapTo] = temp;
}
for (int i = 0; i < 512; i++) {
perm[i] = p[i & 255];
permMod12[i] = (short) (perm[i] % 12);
}
}
// Skewing and unskewing factors for 2, 3, and 4 dimensions
private static final double F2 = 0.5 * (Math.sqrt(3.0)  1.0);
private static final double G2 = (3.0  Math.sqrt(3.0)) / 6.0;
private static final double F3 = 1.0 / 3.0;
private static final double G3 = 1.0 / 6.0;
private static final double F4 = (Math.sqrt(5.0)  1.0) / 4.0;
private static final double G4 = (5.0  Math.sqrt(5.0)) / 20.0;
// This method is a *lot* faster than using (int)Math.floor(x)
private static int fastfloor(double x) {
int xi = (int) x;
return x < xi ? xi  1 : xi;
}
private static double dot(Grad g, double x, double y) {
return g.x * x + g.y * y;
}
private static double dot(Grad g, double x, double y, double z) {
return g.x * x + g.y * y + g.z * z;
}
private static double dot(Grad g, double x, double y, double z, double w) {
return g.x * x + g.y * y + g.z * z + g.w * w;
}
// 2D simplex noise
public double noise(double xin, double yin) {
double n0, n1, n2; // Noise contributions from the three corners
// Skew the input space to determine which simplex cell we're in
double s = (xin + yin) * F2; // Hairy factor for 2D
int i = fastfloor(xin + s);
int j = fastfloor(yin + s);
double t = (i + j) * G2;
double X0 = i  t; // Unskew the cell origin back to (x,y) space
double Y0 = j  t;
double x0 = xin  X0; // The x,y distances from the cell origin
double y0 = yin  Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if (x0 > y0) {
i1 = 1;
j1 = 0;
} // lower triangle, XY order: (0,0)>(1,0)>(1,1)
else {
i1 = 0;
j1 = 1;
} // upper triangle, YX order: (0,0)>(0,1)>(1,1)
// A step of (1,0) in (i,j) means a step of (1c,c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (c,1c) in (x,y), where
// c = (3sqrt(3))/6
double x1 = x0  i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
double y1 = y0  j1 + G2;
double x2 = x0  1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
double y2 = y0  1.0 + 2.0 * G2;
// Work out the hashed gradient indices of the three simplex corners
int ii = i & 255;
int jj = j & 255;
int gi0 = permMod12[ii + perm[jj]];
int gi1 = permMod12[ii + i1 + perm[jj + j1]];
int gi2 = permMod12[ii + 1 + perm[jj + 1]];
// Calculate the contribution from the three corners
double t0 = 0.5  x0 * x0  y0 * y0;
if (t0 < 0) {
n0 = 0.0;
} else {
t0 *= t0;
n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
}
double t1 = 0.5  x1 * x1  y1 * y1;
if (t1 < 0) {
n1 = 0.0;
} else {
t1 *= t1;
n1 = t1 * t1 * dot(grad3[gi1], x1, y1);
}
double t2 = 0.5  x2 * x2  y2 * y2;
if (t2 < 0) {
n2 = 0.0;
} else {
t2 *= t2;
n2 = t2 * t2 * dot(grad3[gi2], x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [1,1].
return 70.0 * (n0 + n1 + n2);
}
// 3D simplex noise
public double noise(double xin, double yin, double zin) {
double n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
double s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D
int i = fastfloor(xin + s);
int j = fastfloor(yin + s);
int k = fastfloor(zin + s);
double t = (i + j + k) * G3;
double X0 = i  t; // Unskew the cell origin back to (x,y,z) space
double Y0 = j  t;
double Z0 = k  t;
double x0 = xin  X0; // The x,y,z distances from the cell origin
double y0 = yin  Y0;
double z0 = zin  Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
if (x0 >= y0) {
if (y0 >= z0) {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
} // X Y Z order
else if (x0 >= z0) {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 0;
k2 = 1;
} // X Z Y order
else {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 1;
j2 = 0;
k2 = 1;
} // Z X Y order
} else { // x0<y0
if (y0 < z0) {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 0;
j2 = 1;
k2 = 1;
} // Z Y X order
else if (x0 < z0) {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 0;
j2 = 1;
k2 = 1;
} // Y Z X order
else {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
} // Y X Z order
}
// A step of (1,0,0) in (i,j,k) means a step of (1c,c,c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (c,1c,c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (c,c,1c) in (x,y,z), where
// c = 1/6.
double x1 = x0  i1 + G3; // Offsets for second corner in (x,y,z) coords
double y1 = y0  j1 + G3;
double z1 = z0  k1 + G3;
double x2 = x0  i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
double y2 = y0  j2 + 2.0 * G3;
double z2 = z0  k2 + 2.0 * G3;
double x3 = x0  1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
double y3 = y0  1.0 + 3.0 * G3;
double z3 = z0  1.0 + 3.0 * G3;
// Work out the hashed gradient indices of the four simplex corners
int ii = i & 255;
int jj = j & 255;
int kk = k & 255;
int gi0 = permMod12[ii + perm[jj + perm[kk]]];
int gi1 = permMod12[ii + i1 + perm[jj + j1 + perm[kk + k1]]];
int gi2 = permMod12[ii + i2 + perm[jj + j2 + perm[kk + k2]]];
int gi3 = permMod12[ii + 1 + perm[jj + 1 + perm[kk + 1]]];
// Calculate the contribution from the four corners
double t0 = 0.6  x0 * x0  y0 * y0  z0 * z0;
if (t0 < 0) {
n0 = 0.0;
} else {
t0 *= t0;
n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0);
}
double t1 = 0.6  x1 * x1  y1 * y1  z1 * z1;
if (t1 < 0) {
n1 = 0.0;
} else {
t1 *= t1;
n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1);
}
double t2 = 0.6  x2 * x2  y2 * y2  z2 * z2;
if (t2 < 0) {
n2 = 0.0;
} else {
t2 *= t2;
n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2);
}
double t3 = 0.6  x3 * x3  y3 * y3  z3 * z3;
if (t3 < 0) {
n3 = 0.0;
} else {
t3 *= t3;
n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [1,1]
return 32.0 * (n0 + n1 + n2 + n3);
}
// 4D simplex noise, better simplex rank ordering method 20120309
public double noise(double x, double y, double z, double w) {
double n0, n1, n2, n3, n4; // Noise contributions from the five corners
// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
double s = (x + y + z + w) * F4; // Factor for 4D skewing
int i = fastfloor(x + s);
int j = fastfloor(y + s);
int k = fastfloor(z + s);
int l = fastfloor(w + s);
double t = (i + j + k + l) * G4; // Factor for 4D unskewing
double X0 = i  t; // Unskew the cell origin back to (x,y,z,w) space
double Y0 = j  t;
double Z0 = k  t;
double W0 = l  t;
double x0 = x  X0; // The x,y,z,w distances from the cell origin
double y0 = y  Y0;
double z0 = z  Z0;
double w0 = w  W0;
// For the 4D case, the simplex is a 4D shape I won't even try to describe.
// To find out which of the 24 possible simplices we're in, we need to
// determine the magnitude ordering of x0, y0, z0 and w0.
// Six pairwise comparisons are performed between each possible pair
// of the four coordinates, and the results are used to rank the numbers.
int rankx = 0;
int ranky = 0;
int rankz = 0;
int rankw = 0;
if (x0 > y0) {
rankx++;
} else {
ranky++;
}
if (x0 > z0) {
rankx++;
} else {
rankz++;
}
if (x0 > w0) {
rankx++;
} else {
rankw++;
}
if (y0 > z0) {
ranky++;
} else {
rankz++;
}
if (y0 > w0) {
ranky++;
} else {
rankw++;
}
if (z0 > w0) {
rankz++;
} else {
rankw++;
}
int i1, j1, k1, l1; // The integer offsets for the second simplex corner
int i2, j2, k2, l2; // The integer offsets for the third simplex corner
int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
// simplex[c] is a 4vector with the numbers 0, 1, 2 and 3 in some order.
// Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
// impossible. Only the 24 indices which have nonzero entries make any sense.
// We use a thresholding to set the coordinates in turn from the largest magnitude.
// Rank 3 denotes the largest coordinate.
i1 = rankx >= 3 ? 1 : 0;
j1 = ranky >= 3 ? 1 : 0;
k1 = rankz >= 3 ? 1 : 0;
l1 = rankw >= 3 ? 1 : 0;
// Rank 2 denotes the second largest coordinate.
i2 = rankx >= 2 ? 1 : 0;
j2 = ranky >= 2 ? 1 : 0;
k2 = rankz >= 2 ? 1 : 0;
l2 = rankw >= 2 ? 1 : 0;
// Rank 1 denotes the second smallest coordinate.
i3 = rankx >= 1 ? 1 : 0;
j3 = ranky >= 1 ? 1 : 0;
k3 = rankz >= 1 ? 1 : 0;
l3 = rankw >= 1 ? 1 : 0;
// The fifth corner has all coordinate offsets = 1, so no need to compute that.
double x1 = x0  i1 + G4; // Offsets for second corner in (x,y,z,w) coords
double y1 = y0  j1 + G4;
double z1 = z0  k1 + G4;
double w1 = w0  l1 + G4;
double x2 = x0  i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
double y2 = y0  j2 + 2.0 * G4;
double z2 = z0  k2 + 2.0 * G4;
double w2 = w0  l2 + 2.0 * G4;
double x3 = x0  i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
double y3 = y0  j3 + 3.0 * G4;
double z3 = z0  k3 + 3.0 * G4;
double w3 = w0  l3 + 3.0 * G4;
double x4 = x0  1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
double y4 = y0  1.0 + 4.0 * G4;
double z4 = z0  1.0 + 4.0 * G4;
double w4 = w0  1.0 + 4.0 * G4;
// Work out the hashed gradient indices of the five simplex corners
int ii = i & 255;
int jj = j & 255;
int kk = k & 255;
int ll = l & 255;
int gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32;
int gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32;
int gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32;
int gi3 = perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32;
int gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32;
// Calculate the contribution from the five corners
double t0 = 0.6  x0 * x0  y0 * y0  z0 * z0  w0 * w0;
if (t0 < 0) {
n0 = 0.0;
} else {
t0 *= t0;
n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0);
}
double t1 = 0.6  x1 * x1  y1 * y1  z1 * z1  w1 * w1;
if (t1 < 0) {
n1 = 0.0;
} else {
t1 *= t1;
n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1);
}
double t2 = 0.6  x2 * x2  y2 * y2  z2 * z2  w2 * w2;
if (t2 < 0) {
n2 = 0.0;
} else {
t2 *= t2;
n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2);
}
double t3 = 0.6  x3 * x3  y3 * y3  z3 * z3  w3 * w3;
if (t3 < 0) {
n3 = 0.0;
} else {
t3 *= t3;
n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3);
}
double t4 = 0.6  x4 * x4  y4 * y4  z4 * z4  w4 * w4;
if (t4 < 0) {
n4 = 0.0;
} else {
t4 *= t4;
n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4);
}
// Sum up and scale the result to cover the range [1,1]
return 27.0 * (n0 + n1 + n2 + n3 + n4);
}
// Inner class to speed upp gradient computations
// (array access is a lot slower than member access)
private static class Grad {
double x, y, z, w;
Grad(double x, double y, double z) {
this.x = x;
this.y = y;
this.z = z;
}
Grad(double x, double y, double z, double w) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
}
}[/java]
Generator
[java]package mygame.Math;
import java.util.Random;
/**
*
*
*/
public class SimplexNoiseGenerator {
private double persistence;
private double[] frequencys;
private double[] amplitudes;
private SimplexNoise[] octaves;
public SimplexNoiseGenerator(int largestFeature, double persistence, int seed) {
this.persistence = persistence;
//recieves a number (eg 128) and calculates what power of 2 it is (eg 2^7)
int numberOfOctaves = (int) Math.ceil(Math.log10(largestFeature) / Math.log10(2));
octaves = new SimplexNoise[numberOfOctaves];
frequencys = new double[numberOfOctaves];
amplitudes = new double[numberOfOctaves];
Random random = new Random(seed);
for (int i = 0; i < numberOfOctaves; i++) {
octaves[i] = new SimplexNoise(random.nextInt());
frequencys[i] = Math.pow(2, i);
amplitudes[i] = Math.pow(persistence, octaves.length  i);
}
}
public double getNoise(int x, int y) {
double result = 0;
for (int i = 0; i < octaves.length; i++) {
result = result + octaves[i].noise(x / frequencys[i], y / frequencys[i]) * amplitudes[i];
}
return result;
}
public double getNoise(int x, int y, int z) {
double result = 0;
for (int i = 0; i < octaves.length; i++) {
double frequency = Math.pow(2, i);
double amplitude = Math.pow(persistence, octaves.length  i);
result = result + octaves[i].noise(x / frequency, y / frequency, z / frequency) * amplitude;
}
return result;
}
}
[/java]